Nonlinear response of vibrational excitons: simulating the two-dimensional infrared spectrum of liquid water.

نویسندگان

  • A Paarmann
  • T Hayashi
  • S Mukamel
  • R J D Miller
چکیده

A simulation formalism for the nonlinear response of vibrational excitons is presented and applied to the OH stretching vibrations of neat liquid H(2)O. The method employs numerical integration of the Schrodinger equation and allows explicit treatment of fluctuating transition frequencies, vibrational couplings, dipole moments, and the anharmonicities of all these quantities, as well as nonadiabatic effects. The split operator technique greatly increases computational feasibility and performance. The electrostatic map for the OH stretching vibrations in liquid water employed in our previous study [A. Paarmann et al., J. Chem. Phys. 128, 191103 (2008)] is presented. The two-dimensional spectra are in close agreement with experiment. The fast 100 fs dynamics are primarily attributed to intramolecular mixing between states in the two-dimensional OH stretching potential. Small intermolecular couplings are sufficient to reproduce the experimental energy transfer time scales. Interference effects between Liouville pathways in excitonic systems and their impact on the analysis of the nonlinear response are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional Infrared Femtosecond Spectroscopy of Cyclic Pentapeptides

The multidimensional optical response of the amide I band of the pentapeptide (cyclo(D-Abu-Arg-Gly-Asp-Mamb)) is computed using the vibrational-exciton model, treating each peptide unit as a localized anharmonic vibration. The absolute value, the real and the imaginary parts of the 2D photon echo signal are simulated by solving the nonlinear exciton equations (NEE). The signatures of the oneand...

متن کامل

Coherent infrared multidimensional spectra of the OH stretching band in liquid water simulated by direct nonlinear exciton propagation.

The two-dimensional vibrational response of the disordered strongly fluctuating OH exciton band in liquid water is investigated using a new simulation protocol. The direct nonlinear exciton propagation generalizes the nonlinear exciton equations to include nonadiabatic time dependent Hamiltonian and transition dipole fluctuations. The excitonic picture is retained and the large cancellation bet...

متن کامل

3D-IR spectroscopy of isotope-substituted liquid water reveals heterogeneous dynamics

The dynamics of the hydrogen bond network of isotopically substituted liquid water are investigated with a new ultrafast nonlinear vibrational spectroscopy, three-dimensional infrared spectroscopy (3D-IR). The 3D-IR spectroscopy is sensitive to three-point frequency fluctuation correlation functions, and the measurements reveal heterogeneous structural relaxation dynamics. We interpret these re...

متن کامل

Probing intermolecular couplings in liquid water with two-dimensional infrared photon echo spectroscopy.

Two-dimensional infrared photon echo and pump probe studies of the OH stretch vibration provide a sensitive probe of the correlations and couplings in the hydrogen bond network of liquid water. The nonlinear response is simulated using numerical integration of the Schrodinger equation with a Hamiltonian constructed to explicitly treat intermolecular coupling and nonadiabatic effects in the high...

متن کامل

Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 20  شماره 

صفحات  -

تاریخ انتشار 2009